Thursday, December 12, 2019
Nuclear Energy Essay Example For Students
Nuclear Energy Essay Word Count: 1748 by definition is the energyconsumed or produced in modifying thecomposition of the atomic nucleus. Nuclear energyis used for things such as atomic bombs, hydrogenbombs and other nuclear weapons. Nuclearenergy can also be used for poweringelectricity-generating plants all over the world. There are many arguments for and against nuclearpower. Nuclear power is an inexpensive cleansource of power. Others feel that because of thehazardous radiation emitted during the producingof the power and the radioactivity of the materialused that nuclear power is not as good as thealternatives which are fossil fuels and solarpower.(Hansen, 1993)If matter changes state or composition, it isaccompanied by the production of energy. Processes such as combustion produce energy byrearranging the atoms or molecules of thatsubstance.(Brain, 1998) An example of this is thecombustion of methane (natural gas) CH(4) + 2O(2) = CO(2) + 2H(2)O + energyIn this example the amount of energy released iseight electron volts or 8 eV. The electron volt unitis the unit used by nuclear physicists. The electronvolt represents the gain in kinetic energy when anelectron is accelerated through a potential drop ofone volt.(Brain, 1998)The most common nuclear reaction is nuclearfission. Nuclear fission is the process in which aheavy nucleus combines with a neutron andseparates the heavy nucleus into two lighternuclei.(Roy, 1993) The most typical fissionreaction is that of uranium-235 it is as follows:92 U235 + 1 neutron = 38 Sr96 + 54 XE138 + 2neutrons + energyAnother type of nuclear reaction is nuclear fusion. Nuclear fusion occurs when two light elementscombine to form a heavier atom.(Grisham, 1993)An example of this is:1 H(2) + 1 H(3) = 2 He(4) +1 neutron + energyNuclear FissionNuclear fission is a complex process, but manyproducts are formed during this process. Not onlythe two nuclei but also neutrons, beta particles,neutrinos and gamma rays are created during thefission process.(Roy, 1993) There are more thanfifty different ways a nucleus may undergo fission. Some of the ways are much more common thanothers. During the fission process the nucleusbreaks into to unequal parts, one lighter fragmentand a heavier fragment. These nuclei are formedwith excess energy that they do not usually have intheir ground state they must lose the extra energy. They release this extra energy in the form ofgamma radiation or sometimes neutron emission. The primary fragments are rich in neutrons and areradioactive. Uranium-235 which contains 92protons and 143 neutrons are more likely to undergo fission when bombarded by low-energyneutrons.(Hansen, 1993)Nuclear Fission Used in BombsThe fission process was discovered in the late1930s. In late 1939 two scientists Otto Frisch andLise Meitner discovered the fissioning of uraniuminto lighter particles while they were doing anexperiment involving neutron irradiation ofuranium. The possibility of a self-sustaining chainreaction was apparent this caused an acceleratedrate of research.(Hansen, 1993)The United States Government researched into thepossible applications of nuclear fission at thebeginning of World War II. In order for theweapon to be able to work properly it wouldrequire a self-sustaining fission reaction to becreated and also that an adequate amount offissionable material could be produced for use in aweapon.(Brain, 1998) On December 2, 1942 atthe University of Chicago Enrico Fe rmi and histeam developed the worlds first self-sustainingreactors. The reactor was fueled with naturaluranium imbedded in graphite blocks.(Hansen,1993) The fission occurred in the isotope ofuranium, U-235. An important factor indeveloping the nuclear bomb was to separateU-235 from U-238. Natural uranium only contains0.7% of U-235 and the remaining 99.3% ofnatural uranium is U-238. The problem with this isthat U-238 does not fission except with very highenergy neutrons which are not available from thefission process. To separate the two materialsgaseous defusion is used. Another way of makingnuclear weapons is to use a different fissionablenucleus. Another material that is used is a syntheticisotope of plutonium P-239. Nuclear FusionIn most fusion reactions after the two atomic nucleimerge together to form a heavier nucleus a freenucleon is also formed. In just about all fusionreactions between light nuclei, a portion of theirrest mass is converted into kinetic energy of thereaction products, or into gamma rays.(Grisham,1993) The kinetic energy and gamma rays that arereleased in the process of fusion, heat the insidekeeping the temperature very high so the fusioncan continue occurring. At thermonucleartemperatures, matter can only exist in the plasmastate. Matter at thermonuclear temperatureconsists of electrons, positive ions and very fewneutral atoms. If fusion reactions occur withinplasma the reactions heat the substance evenmore, because a portion of the reaction energy istransferred to the bulk of the plasma throughcollisions.(Grisham, 1993)Stars produce their energy through many types offusion reactions. Scientists know that fusionreactions have clear potential as a power sourceon earth due to the fact those fusion reactions havebeen driving the stars for billions of years.(Hansen,1993) For many decades now scientists have triedto develop thermonuclear fusion reactions that willproduce useful power. Police Brutality EssayThis idea is highly unlikely because it is the onlypower source for the region.(Hansen, 1993)Nuclear Energy TodayNuclear power has become a major source of theworlds electric energy since the discovery offission 50 years ago. At the end of 1989 therewere 416 nuclear power plants operatingworldwide producing 17% of the worldselectricity. There were 130 plants that were underdesign at the end of 1989. Nuclear power is usedin 27 different nations and another three nationshave plants under construction. The United Stateshas the worlds largest nuclear energy program atthe end of 1989 with 108 operating plants havingthe operating capacity of 100,000 MW providing20% of the U.S. with their power. In 1989 nuclearpower was the second largest source of electricityin the U.S. exceeded only by coal whichcontributes 55% of the U.S.s electricity. Othersources of power are natural gas 9%, oil 6%, andhydro power 9%.(Hansen, 1993) In Ontario 40%of the electricity that is used i s produced bynuclear power. Ontario nuclear power plantsproduce 8728 MW ofelectricity.(www.hydro.on.ca, 1999)Nuclear power plants are more complex and costmore to build than plants that use fossil fuels. Thecost of fuel for nuclear power is much lower thanthe cost of fossil fuel. In the long run nuclearelectricity is much cheaper for most nationsbecause of the differences in fuel prices. Forindustrialized countries of Europe and Asia thedifference in cost may be as large as a factor ofhalf the cost. In some countries the nuclear powerprogram has come to a standstill. In the UnitedStates there hasnt been an order to build anuclear power plant since mid-1970s. The mainreason for the standstill is the move towardsincreased efficiency in the consumption of oil andalso a drop in the demand for energy. The publicis also concerned about the safety of nuclearpower plants and also the increasing awareness ofthe problems with nuclear waste. The reason forthe increase in safety awareness is be cause of theaccidents that have occurred. Before 1979 thepublic was all for nuclear energy but since then areactor in Three Mile Island leaked radioactivematerial into the environment. The largest reasonwhy the public changed their view was theexplosion of reactor four at the Chernobyl powerplant. Nuclear power is an important factor in all of arelives, if it if used safely it provides us withinexpensive electricity but if used carelessly it canmake us ill, destroy the land and even kill us. It isbelieved that in the future nuclear power will besafer for all. The pro and cons of nuclear powerare balanced because it is much more inexpensiveand it will not run out like fossil fuels eventuallywill. Nuclear reactors do not explode all thatoften.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.